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ON THE COUPLING OF BEM AND FEM 
FOR EXTERIOR PROBLEMS 

FOR THE HELMHOLTZ EQUATION 

RUIXIA LI 

ABSTRACT. This paper deals with the coupled procedure of the boundary el- 
ement method (BEM) and the finite element method (FEM) for the exterior 
boundary value problems for the Helmholtz equation. A circle is selected as 
the common boundary on which the integral equation is set up with Fourier 
expansion. As a result, the exterior problems are transformed into nonlocal 
boundary value problems in a bounded domain which is treated with FEM, 
and the normal derivative of the unknown function at the common boundary 
does not appear. The solvability of the variational equation and the error 
estimate are also discussed. 

1. INTRODUCTION 

The purpose of this paper is to couple BEM and FEM for the numerical solution 
of the exterior boundary value problems 

(1.la) Au+k2u = O in Q, 

(l.b) u = uo(x,y) on F 

and 
(1.2a) Au+k2u = O in Q, 

(1.2b) - Un(XIY) on F 

with the Sommerfeld radiation condition 

(1.3) au -iku = o(r-1/2) as r oo 
O9r 

uniformly for all directions, where Q is an unbounded domain in the plane R2 with 
boundary F which is a closed smooth curve, Jm(k) > 0, i --, r 2+y 2 

and n is the outer normal to F. 
The coupled procedure in [1] and [2] are based upon the direct BEM in which 

the boundary integral equations come from Green's formula, and the unknowns 
on the common boundary involve au as well as u. Feng and Yu (cf. [3], [4]) 
developed an integral equation for the Laplace equation with a circular boundary 
by using Green's function. Here we also take a circle as the common boundary, 
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but an integral equation which is called the Dirichlet to Neumann (DtN) boundary 
condition in [5] is obtained by Fourier expansion. As a result, only u is considered 
unknown on the circle. Such a procedure is advantageous from a numerical point 
of view. In Section 4, we give a convergence analysis which is different from one for 
k =0 in [5] and k > 0 in [6]. 

2. INTEGRAL EQUATION ON A CIRCLE 

In order to obtain an integral equation on a circle, assume the boundary F in 
this section is a circle of radius R whose centre is the origin of coordinates. In the 
polar coordinates system r, 0 in the plane, the equation (l.la) and the boundary 
conditions (l.b) and (1.2b) become, respectively, 

(2.1) u 2 - + 2 + k2u =O, 

(2.2) u(R, 0) = uo(0), 

and 

(2.3) ,)U (RI 0) = Un(O). 

nIom the periodicity of the boundary conditions, the solution of equation (2.1) 
is a 27r-periodic function for 0 and can be expressed as a Fourier series. We find 
that the function 

(2.4) u(r,0) - E cnH (1)(kr)einO, r > R, 

satisfies equation (2.1) and the radiation condition (1.3), where H41) (z) denotes the 
Hankel function of the first kind 

(2.5) H (1) (z) = Jn (z) + iYn (z) I n = 0,1,2, .... 

and Jn (z) and Yn (z) being the Bessel functions of the first and second kind, respec- 
tively: 

0 1z 

(2.6) Jn(Z) = E(-l)1 j!j )! 2 2jn n = O,11, 2, .. 
j=O j! (j?+n)! 2 

2 Z 1 nI(ni-j-1)!Z 2j (2.7) Yn(Z) 2-J (z)ln- -- E iv 2 ~7r;- j! 2 

--Z,7E0(-1)3,'!j n![X6(n + j + 1) 

+ +(j + 1)] (Z2)2j+n, n =0, 1, 2, .. 
2 

with 

larg (z)l < 7r, 1)= , m =-y+ + 2 + + + ) m > 2, 2 rn -il 
in which -y = 0.5772156649... is Euler's constant. The coefficient cn in (2.4) will 
be determined from the boundary conditions. 

Substituting the boundary condition (2.2) into (2.4), we have 

(2.8) U(r 0) = E anGInj (kR, kr)e in?I r > RI 
n=-oco 
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where an is the Fourier coefficient for uo (0) 

1 2-7r 

an =- uo()e-inOdO, Gn (x,Y) -= H () (y) / H () (x) 

From (2.6) and (2.7) we find that the asymptotic behavior of H(1) (z) is given by 

(2-9) H( )(z) =-it ) () 1+ _()+? 2) an0 

and furthermore 

(2.10) Gn(kR, kr) ( r) (+ (n))asn o. 

Hence the series in (2.8) is absolutely and uniformly convergent on any closed 
interval in (R, oo) and can be differentiated term by term, and the function u(r, 0) in 
(2.8) is indeed the solution for the Dirichlet problem (1. la), (2.2) with the radiation 
condition (1.3). Introducing the integral operator P defined by 

(2.11) 

Pv(0) =2 j [Go (kRj kr) + 2 E Gn (kR, kr) cos n(0 - ') v(0') dO', r > R, 

the formula (2.8) can be rewritten as 

(2.12) u(r, 0) = Puo(0), r > R. 

Differentiating (2.12) for r and letting r -> R + 0, we get a boundary integral 
equation 

(2.13) Ku(R, O) = - (RrO)I 

where K is the boundary integral operator defined by 

(2.14) Kv(0) =2 j [Ho (R) + 2 E Hn (R) cos n(0 - 0')] v(0')dO' 
n=~1 

with 

(2.15) Hn(z)- d () 1 H (z) _ =0,1,2, 
dz HHn() ' nl,12 

Fnom (2.9), we find that 

(2.16) ~~~z n (n -1) 2 n4 

and the series in (2.14) is divergent. Since 

I0 0 
Z -cos nO =-ln 2 sin - 0 #2m7r, 

and since in the theory of generalized functions ([7]) 
00 1 

Z ncosnO - 2 0' 0 5 2mw, 
n=~1 4sn2 

it follows that the integral kernel in (2.14) contains a singularity of the (0 0,)-2 
type and the integral should be considered as the finite part of the Hadamard 
hypersingular integral ([3], [4], [8]). 
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Similarly, we can obtain the solution for the Neumann problem (1.2a),(2.3),(1.3) 

1 
r2lr 

Go 
(kR 

r I 
G(R r 

u(r,0) = k X R,k(r) +2 E Gm(kRR) cos m (0kRR)JU (O')dO, 

r> R, 

and another boundary integral equation 
_ 27r [ 1 1 ,1au 

(2.17) 1 I + 2L Cos m(0-0')1 (R, 0')d' = u(R, 0) 2irk Ho(kR) rniH(kR) O 

whose kernel contains an integrable singularity of the ln 10 - 'l type. 

3. COUPLED PROCEDURE AND VARIATIONAL FORMULATION 

Now we discuss the coupled procedure of BEM and FEM. Make a circle o= 
{(x, y)Ix2 + y2 = R2} for an appropriate radius R such that the boundary F is 
surrounded by Fo, and let FO divide the domain Q into a bounded part Q1 = 
{(x,y) x2+y2 < R2,(x,y) E Q}andanunboundedpartQ2 = {(x,y) x2+y2 > R2}. 

Faom the last section we see that the function u satisfying equation (1.la) in Q2 
and the radiation condition (1.3) satisfies 

= K(-you) on FO 
an 

with the trace operator -Yo defined by -yOu = ulrJ. Thus the exterior Dirichlet 
problem (1.1),(1.3) and the exterior Neumann problem (1.2),(1.3) are transformed 
into 

ZAu+-k2u=O inQl, 

(3.1) u=u0 onF, 

09- = K (-you) on FO, ann 
and 

LAu+ k2u=O inQl, 

(3.2) An n on F, 

I 0U = K(-you) on FO, 

respectively. 
Now we can apply FEM to the nonlocal boundary value problems (3.1) and (3.2) 

in the bounded domain Ql. The variational problem corresponding to (3.2) is: Find 
u E H1(Q1) such that 

(3.3) A(u,v) = (un,v) Vv E H1(Ql) 

where 
A(u, v) ai(u, v) + b(-you, -yov), 

a,(u,v) f1(Vu Vv - k2uv)dQ, b(-you,-yov) j(-yov)K(-you)ds, 

(Un\V) UnVds, Vu *Vv =uv 
- 

&+u- 

Obviously, a,(.,-), b(-, ) and A(.,.) are symmetric bilinear forms. 
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It must be pointed out that the unknown oyo(a) is not involved in (3.3). This is 
why we use the integral equation (2.13) on Fo, not (2.17), and select a circle as the 
common boundary, not another closed curve. This coupled procedure is superior 
to that based upon the direct BEM. 

For the following discussion, we introduce the function spaces 

H1j(Q) = {u u E H1(Q) for any compact set Q C Q}, 

ij(Q) = {u u E Hloc(Q), u satisfying the radiation condition (1.3)}, 

HL(Q) = {u u EE HIj(Q), Au + k2U = O in Q}, 
Hi(Q) = {u u E Hlloc(Q), u having compact support in Q}, 

and define 

(3.5) a2(U,v) V (Vu. Vv - k2uv)dQ, a(u,v)=al(u,v) +a2(u,v). 
Q2 

Lemma 3.1. 

b(you,yov) = a2(U,V) Vu E HLI(Q2),V E H1(Q2). 

Proof. It follows from Green's formula. C] 

Theorem 3.1. Let Un E H-1/2(F) be given. Thus the variational problem (3.3) 
in Q1 is equivalent to the variational problem corresponding to (1.2), (1.3) in Q: 
Find u E H1(Q) such that 

(3.6) a(u,v) = (Un,v) Vv E H1(Q). 

In other words, if ul E H1(Ql) is the solution of.(3.3), then 

Jul in Q11 
U U2 P(-ouj) in Q2 

is the solution of (3.6); conversely, if u E H21 (Q) is the solution of (3.6), then u in 
Q1 is the solution of (3.3). 

Proof. Let u1 E H1(Q1) satisfy the variational formula (3.3). So U2 P(-youl) E 

HL'(Q2), Y(U2 = -YOU1 E H1/2 (Fo) and u E H1(Q). From Lemma 3.1, it follows that 

a(u, v) = a, (u, v) + b(-you, -yov) = A(ui, v) = (Un, v) Vv E H1 (Q). 

Hence u is the solution of (3.6). 
Conversely, assume u E H, (Q) satisfies the variational formula (3.6); then u 

is the generalized solution of (1.2),(1.3). For any v1 E H1(Q1), it is known that 
-yovi E H1/2(Fo), and there exists v2 E H (Q2) such that -yov2 = -yov1 from the 
trace theorem. Writing 

VvJ in Q1 
v= 

v2 in Q2, 

we see that v E H (Q), and 

A(u, vi) = a,(u, vi) + a2(u, V2) = a(u, v) = (Un,V) = (Un, V1). 

This shows that u in Q1 is the solution of (3.3). 0 
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nIomn the solvability and uniqueness of (3.6), now we can say that for any given 
Un E H-1/2(F) there exists exactly one variational solution to (3.3). 

In the following discussion, 11 S ,D denotes the norm in the Sobolev space Hs (D) 
and 11 IO D is L2(D)-norm for s = 0. 

Lemma 3.2. The linear operator K: Hs (FO) > Hsl (Fo) is continuous, i. e. 

(3.7) IlKfWJsi1,rO < clifl s,rO Vf E Hs(Fo) 

where s is any real number and c is a positive constant independent of f. 

Proof. Let f(O) E Hs(Fo) and expand it in the Fourier series 

f (0) - E an nO 
n=-o00 

with the Fourier coefficients 

an 2 - f21rf (O)e-indO. 

The norm in Hs(Fo) can be defined using the Fourier coefficiets as 

00 -~~~~ 1/2 
r ='0 27rR , (n2 + 1)S Ian 12 

n=-oco 

Thus from (2.14) we have 

00 Kf =k E nH k)en 
-00 

IlKf 112 27rlkw k2R E (n2 + 1)2s-1 12 

-00 

By (2.16), there exists a positive integer N such that 2 < IkRHn(kR)I < 3 when 
n > N, and we obtain (3.7) with 

c = max { 21 a OaN { IkHn (kR) 22 +1}} 

Theorem 3.2. The symmetric bilinear form b(.,.) on the space H1/2(Fo)x 
H1/2 (Fo) has the following properties: 

1. Ib(f) g) I < cl IIf 11 1/2,ro 11 9 1I/2,ro (continuity). 
2. lm(-kb(f,f)) > c2 1f /2rO (H1/2(o)-coercivity). 

Here f, g E H112 (Fo) are arbitrary functions and c1, C2 > 0 are constants indepen- 
dent of f and g. 

Proof. (1) It comes from Lemma 3.2 that 

lb(f,fg)l 0YKfds < 1lgll/2,rpojjKfjli/2p0 < clflfll/2,p0Wyfll/2,po 

(2) Let 

u(r, 0) = Pf (0). 
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Thus u E HL(Q2),you f. Defining Qd {(X,Y) I R2 < x2 + y2 < d2} and 

Ird ={(X,Y) I X2 + y2 = d2} for d > R and using the radiation condition and 
Green's formula, we have 

_ f F12&u 2 12 9ul 
O:= lim j -ziku2ds= lim] [ I + Ikuj- 21m(k-u-)ds, d-c)o jd | 9r d- t od [l r + r) 

U o ds=-] (k21u12 IVu2 )dQ - u-a ds. 

Combine them to give 

(3.8) 

Im(-kb(f, f)) = Im- k j u g ds) 

= 
ulim 

I 
(I (9U1 +Iku12)ds+Im(k)j (7Vu12 + Iku12)dQ]. 

If Im(k) > 0, from the trace theorem we get 

Im(-kb(f,f)) > Im(k)min{1, Ik2}k u ,Q2 > f C2 1/2,ro 

Theorem 3.2 can also be proved like Lemma 3.2, and from Theorem 3.2 we obtain 

the following theorem. 

Theorem 3.3. The symmetric bilinear form A(., ) on the space H1(Qj) x H1(Qj) 
has the following properties: 

1. IA(u,v) < cjjj uljj,Qj1vWv j, (continuity). 

2. Im (- k A(u, -u)) > C2 lll Q I (H 1 (Q )coercivity). 

Here u, v E H1 (Qj) are arbitrary functions and Cl, C2 > 0 are constants independent 
of u and v. 

Theorem 3.3 also shows that the variational problem (3.3) has only one solution. 

By (3.8) and Theorem 3.2, there exists a constant c > 0 such that 

(3.9) |1Pf1 1,Q2 ?< CI f 1/2,Fo Vf E HI/2(ro). 

The above discussion can be applied to the boundary value problem (3.1), in 

which the boundary condition on r is essential. 

4. CONVERGENCE ANALYSIS AND ERROR ESTIMATE 

In the previous section a boundary value problem in an unbounded domain 

has been transformed into the corresponding variational problem in a bounded 

one. Now FEM can be applied in Ql. Let 41 (x, y), ...,OM(X, y) be the local base 

functions of interpolation in FEM, and uh(x,y) be the interpolation function for 

u(x, y) on Q1 defined by 

M 
(4.1) uh(x,y) E uj6j/(x,y) in ni. 

ji=l 

So the discrete variational problem corresponding to (3.3) is: Find uh E Sh(Q1) 

such that 

(4.2) A(uh, vh) = (u", vh) Vvh E Sh(Q1), 
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where Sh(Ql) is the finite element space defined by 

Sh(Ql) = Span{jj,. ., M V} C H (Q1). 

In the following, u and uh denote the solutions for the variational problem (3.3) 
and the discrete variational problem (4.2), respectively, h is the maximal length of 
the diameters of elements, H H1(Qj) _ Sh (Q1) is the interpolation operator, and 
c denotes a positive constant independent of u and uh; it can have different values 
at different places. 

Theorem 4.1. If u E Hi+'(Qj) and 

liv-fIVy 1,Qi < ch3lv llj+?,Qi Vv E Hi+l(Qi) 

then 

iiu - uhjj, ,Ql < chi llullj+l,,Q,- 

Proof. By Theorem 3.3, we use Cea's lemma to obtain 

IIu - Uhjj,,Ql < cllu - Il1,Qi < chiljulj+l,Q1. 

Theorem 4.2. 

(4.3) IP('You) - P('You h) I? CrI U - Uhjjor0 <c CrIU - U" r11Q > RI 
(4.4) Ip^O)toU h)| < CII|U _Uh|0r < CrIIuU _ I jj,Q1)r R 
(4.4) IIP('You) - P(you) 1,11Q2 ? c|u-u h1/2,r. ? c|u -uh 1,QQ1 

where Cr depends on r. 

Proof. By (2.11), 

P('you) - P('Youh) 2 j [Go + 2 E Gncos n(O - 0')] (-you - -youh)dO' 

< 2 [2ir(IGo12 +22 E IGn 2) j you - -yOuh 12d' 

= [2 I(lGo2+)2 E IGnl iiu-u 

and the series is convergent for r > R by (2.10), and (4.3) is proved by the trace 
theorem. We use (3.9) and the trace theorem to arrive at (4.4). ElI 

The last theorem shows that the errors in Q2 can be controlled by the errors on 
Fo and in Q1. 

For time-harmonic acoustic wave propagation in a homogeneous isotropic medi- 
um, k2 = W(W + i'y)/c2, where c is the speed of sound, w is the frequency of 
the acoustic wave and 'y is the damping coefficient. If lkl is large, the Helmholtz 
equation has a rapidly oscillating solution and the quality of a finite element solution 
depends significantly on the wavenumber k as well as the stepwidth h of meshes. 
Ihlenburg and Babuska [9] applied the FEM with piecewise linear approximation 
to a one-dimensional Helmholtz equation, and their results show that the relative 
error of the FE-solution in the H1-seminorm is controlled by a term of order kh. 
Bayliss, et al., in [10] dealt with a two-dimentional Helmholtz equation with a real 
wavenumber k > 0 in a bounded domain, and stated a convergence theorem which 
shows that the relative error bound is O(k(kh)j+1) in the L2-norm and O(k(kh)j) 
in the H1-norm, where j is the order of polynomial approximation in FEM. In 
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this paper, Im(k) > 0 in an unbounded domain is assumed. For a large lkl, the 
constants c1 and c2 in Theorem 3.3 are Ik12 and Im(k), respectively, so the constant 
in Cea's lemma is of order Ik13/Im(k). For a linear interpolation, the error of the 
FE-solution is 

I IU-Uh1l11Q- < CIm(k) hl l 12,Q1 

with a constant c independent of k and h. In addition, the constant c in (4.4) is 

7lk -/Im(k). 
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